Copyright © 2020-2024 Corporation. All rights reserved.深圳KAIYUN体育有限公司 版权所有
统计技术 数据挖掘涉及的科学领域和技术很多,如统计技术。统计技术对数据集进行挖掘的主要思想是:统计的方法对给定的数据集合假设了一个分布或者概率模型(例如一个正态分布)然后根据模型采用相应的方法来进行挖掘。关联规则 数据关联是数据库中存在的一类重要的可被发现的知识。
数据挖掘没有大家想象中难,一般来说要掌握统计学、聚类分析和模式识别、决策树分类技术、人工神经网络和遗传基因算法、规则归纳和可视化技术。统计学 统计学是最基本的数据挖掘技术,特别是多元统计分析,如判别分析、主成分分析、因子分析、相关分析、多元回归分析等。
可以利用大数据实现智能交通、环保监测、城市规划和智能安防。车辆监控,车辆调度,通过流量分析,进行公交线路调整,通过大数据分析预测路段车辆拥堵时间,制定缓解交通拥堵方案,通过一卡通全国联网,实施一卡走天下,记录用户所有行为轨迹。
数据挖掘:目前,还需要改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。想了解更多大数据挖掘技术,请关注CDA数据分析课程。
数据挖掘的应用非常广泛,只要该产业有分析价值与需求的数据库,皆可利用数据挖掘工具进行有目的的发掘分析。
数据挖掘可以应用在金融、医疗保健、市场业、零售业、制造业、司法、工程和科学、保险业等领域。数据挖掘,又译为资料探勘、数据采矿。它是数据库知识发现中的一个步骤。数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性的信息的过程。
有几种数据挖掘方法可以应用于交叉销售。关联规则分析,能够发现顾客倾向于关联购买哪些商品;聚类分析,能够发现对特定产品感兴趣的用户群;神经网络、回归等方法,能够预测顾客购买该新产品的可能性。
可以利用大数据实现智能交通、环保监测、城市规划和智能安防。车辆监控,车辆调度,通过流量分析,进行公交线路调整,通过大数据分析预测路段车辆拥堵时间,制定缓解交通拥堵方案,通过一卡通全国联网,实施一卡走天下,记录用户所有行为轨迹。
教材方面还是以官方的推荐为主吧,我在CDA数据分析的官网查到大概有4本是必读的, 经管之家. CDA 数据分析师备考手册(电子版). 201 (必读)。 数据挖掘:概念与技术(原书第 3 版)[M]. 范明, 孟小峰 译, 机械工业出版社,201 (必读)。
级我看官网上有推 荐参考书目,还有一个题库呢。1级的参考书目就是他们人大经济论坛出的。
当然能考,计算机专业靠CDA认证还是很有优势的,我是去年报考的,给你一点个人经验吧,首先你先去CDA官网上将考试大纲和大纲解析打印出来,按照大纲上知识点的占分比重安排复习的顺序和时间,学习要根据备考大纲进行系统,有目的地学习,大纲推荐的必读书籍要重点看。
第15本《数据挖掘导论》这本书绝对是一本良心教材,拿到手从第一章开始阅读,能看多少就看多少。但是要尽量多看点,因为此书你可能要看一辈子的~~第16本《算法导论中文版》本书将严谨性和全面性融为一体,深入讨论各类算法,并着力使这些算法的设计和分析能为各个层次的读者接受。
《CPDA注册项目数据分析师培训教程》随着我国加入wto和全球经济一体化进程的加快,为顺应国内经济快速发展的趋势,急需高素质投资分析人才注册项目数据分析师(cpda),该职业将成为经济发展不可缺少的重要专门人才。
为了全面准备CDA考试,推荐参考书籍如《精益业务数据分析》(CDA LEVEL Ⅰ),重点关注考纲要求,而非详细软件操作。
1、《数据挖掘导论》由人民邮电出版社出版,[美]作者Pang-Ning Tan,Michael Steinbach,Vipin Kumar 合著。该书全面介绍了数据挖掘,涵盖了五个主题:数据、分类、关联分析、聚类和异常检测。除异常检测外,每个主题都有两章:前一章涵盖基本概念、代表性算法和评估技术,而后一章讨论高级概念和算法。
2、本书对数据挖掘进行了全面介绍,旨在为读者提供将数据挖掘应用于实际问题所必需的知识。本书涵盖五个主题:数据、分类、关联分析、聚类和异常检测。除异常检测外,每个主题都有两章:前面一章讲述基本概念、代表性算法和评估技术,而后面一章较深入地讨论高级概念和算法。
3、数据挖掘 《数据挖掘导论(无缺版)》本书全面介绍了数据挖掘,包括了五个主题:数据、分类、相关剖析、聚类和异常检测。除异常检测外,每个主题都有两章。前一章包括根柢概念、代表性算法和点评技术,然后一章谈论高档概念和算法。
4、首先,从科普性质的《数学之美》开启,它如同启蒙读物,点燃对机器学习的兴趣火花。接着,实战类的《机器学习实战》和《推荐系统实践》等书籍,让你在实践中探索,边学边用,建立起基础模型的运用能力。
1、教材方面还是以官方的推荐为主吧,我在CDA数据分析的官网查到大概有4本是必读的, 经管之家. CDA 数据分析师备考手册(电子版). 201 (必读)。 数据挖掘:概念与技术(原书第 3 版)[M]. 范明, 孟小峰 译, 机械工业出版社,201 (必读)。
2、报考的是哪一级?1级我看官网上有推荐参考书目,还有一个题库呢。1级的参考书目就是他们人大经济论坛出的。
3、级我看官网上有推 荐参考书目,还有一个题库呢。1级的参考书目就是他们人大经济论坛出的。