数据挖掘分类方法研究(数据挖掘五大类分析方法)

数据挖掘按数据挖掘方法和技术分类有哪些

1、数据挖掘按数据挖掘方法和技术分类有神经网络、遗传算法、决策树方法、粗集方法、覆盖正例排斥反例方法、统计分析方法、模糊集方法和挖掘对象。数据挖掘技术是一种数据处理的技术,是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中、人们事先不知道又潜在有用信息和知识的过程。

2、遗传算法 遗传算法是一种依据微生物自然选择学说与基因遗传原理的恣意优化算法,是一种仿生技能全局性提升办法。遗传算法具有的暗含并行性、便于和其他实体模型交融等特性促使它在数据发掘中被多方面运用。

3、主要的分类方法:决策树、KNN 法 (K-Nearest Neighbor)、SVM 法、VSM 法、Bayes 法、神经网络等。聚类 聚类指事先并不知道任何样本的类别标号,按照对象的相似性和差异性,把一组对象划分成若干类,并且每个类里面对象之间的相似度较高,不同类里面对象之间相似度较低或差异明显。

4、神经网络法是模拟生物神经系统的结构和功能,是一种通过训练来学习的非线性预测模型,它将每一个连接看作一个处理单元,试图模拟人脑神经元的功能,可完成分类、聚类、特征挖掘等多种数据挖掘任务。神经网络的学习方法主要表现在权值的修改上。

5、②神经网络技术 神经网络是通过数学算法来模仿人脑思维的,它是数据挖掘中机器学习的典型代表。神经网络是人脑的抽象计算模型,数据挖掘中的神经网络是由大量并行分布的微处理单元组成的,它有通过调整连接强度从经验知识中进行学习的能力,并可以将这些知识进行应用。

数据挖掘中的分类技术

分类分类是找出数据库中的一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到摸个给定的类别中。

大数据挖掘主要涉及以下四种: 关联规则关联规则使两个或多个项之间的关联以确定它们之间的模式。例如,超市可以确定顾客在买草莓时也常买鲜奶油,反之亦然。关联通常用于销售点系统,以确定产品之间的共同趋势。 分类我们可以使用多个属性来标记特定类别的项。

进行数据挖掘时可采用许多不同的算法。决策树是一种经常要用到的技术,可以用于分析数据,同样也可以用来作预测。常用的算法有CHAID、CART、ID3和C5。决策树方法很直观,这是它的最大优点,缺点是随着数据复杂性的提高,分支数增多,管理起来很困难。

回归分析包括线性回归,这里主要是指多元线性回归和逻辑斯蒂回归。其中,在数据化运营中更多使用的是逻辑斯蒂回归,它又包括响应预测、分类划分等内容。

分类是数据挖掘中的一项非常重要的任务,利用分类技术可以从数据集中提取描述数据类的一个函数或模型(也常称为分类器),并把数据集中的每个对象归结到某个已知的对象类中。

数据挖掘的技术包括:聚类分析、分类与预测、关联规则挖掘、序列挖掘等。聚类分析是数据挖掘中一种非常重要的技术。该技术主要是将数据分为多个不同的组或簇,其中每个组内的数据具有很高的相似性,而不同组之间的数据则有很大的差异。聚类分析广泛应用于客户细分、市场研究等领域。

用于数据挖掘的分类算法有哪些,各有何优劣

1、常用的算法有CHAID、CART、ID3和C5。决策树方法很直观,这是它的最大优点,缺点是随着数据复杂性的提高,分支数增多,管理起来很困难。ANGOSS公司的KnowedgeSEEKER产品采用了混合算法的决策树。神经网络近来越来越受到人们的关注,因为它为解决大复杂度问题提供了一种相对来说比较有效的简单方法。

2、朴素贝叶斯(Naive Bayes, NB)简单,就像做一些数数的工作。如果条件独立假设成立的话,NB将比鉴别模型(如Logistic回归)收敛的更快,所以你只需要少量的训练数据。

3、朴素贝叶斯算法(Naive Bayes, NB)以其简洁性著称,类似于进行基础的计数任务。在满足条件独立性假设的前提下,NB能够迅速收敛,尤其适用于训练数据有限的情况。在半监督学习环境中,或者当需要平衡模型复杂度与性能时,NB是一个不错的选择。

4、比较简单的算法,所需估计的参数很少,对缺失数据不太敏感。如果条件独立性假设成立,即各特征之间相互独立,朴素贝叶斯分类器将会比判别模型,如逻辑回归收敛得更快,因此只需要较少的训练数据。就算该假设不成立,朴素贝叶斯分类器在实践中仍然有着不俗的表现。

5、. CART: 分类与回归树CART, Classification and Regression Trees。 在分类树下面有两个关键的思想。第一个是关于递归地划分自变量空间的想法;第二个想法是用验证数据进行剪枝。

6、神经网络法是模拟生物神经系统的结构和功能,是一种通过训练来学习的非线性预测模型,它将每一个连接看作一个处理单元,试图模拟人脑神经元的功能,可完成分类、聚类、特征挖掘等多种数据挖掘任务。神经网络的学习方法主要表现在权值的修改上。